Tetrodotoxin Sensitivity of the Vertebrate Cardiac Na+ Current

نویسندگان

  • Matti Vornanen
  • Minna Hassinen
  • Jaakko Haverinen
چکیده

Evolutionary origin and physiological significance of the tetrodotoxin (TTX) resistance of the vertebrate cardiac Na(+) current (I(Na)) is still unresolved. To this end, TTX sensitivity of the cardiac I(Na) was examined in cardiac myocytes of a cyclostome (lamprey), three teleost fishes (crucian carp, burbot and rainbow trout), a clawed frog, a snake (viper) and a bird (quail). In lamprey, teleost fishes, frog and bird the cardiac I(Na) was highly TTX-sensitive with EC(50)-values between 1.4 and 6.6 nmol·L(-1). In the snake heart, about 80% of the I(Na) was TTX-resistant with EC(50) value of 0.65 μmol·L(-1), the rest being TTX-sensitive (EC(50) = 0.5 nmol·L(-1)). Although TTX-resistance of the cardiac I(Na) appears to be limited to mammals and reptiles, the presence of TTX-resistant isoform of Na(+) channel in the lamprey heart suggest an early evolutionary origin of the TTX-resistance, perhaps in the common ancestor of all vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive evolution of the vertebrate skeletal muscle sodium channel

Tetrodotoxin (TTX) is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na(v)). The skeletal muscle Na(v) (Na(v)1.4) channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sens...

متن کامل

Tetrodotoxin blocks native cardiac L-type calcium channels but not CaV1.2 channels expressed in HEK cells.

Tetrodotoxin (TTX) has been believed for a long time to be a selective inhibitor of voltage-gated fast Na(+) channels in excitable tissues, including mammalian myocardium. Recently TTX has been shown to block cardiac L-type Ca(2+) current (ICa,L). Furthermore, this inhibition was ascribed to binding of TTX to the outer pore of the Ca(2+) channel, contributing to the selectivity filter region. I...

متن کامل

Inositol trisphosphate promotes Na-Ca exchange current by releasing calcium from sarcoplasmic reticulum in cardiac myocytes.

An early inward tail current evoked by membrane depolarization (from -80 to -40 mV) sufficient to activate sodium but not calcium current was studied in single voltage-clamped ventricular myocytes isolated from guinea pig hearts. Like forward-mode Na-Ca exchange, this early inward tail current required [Na+]o and [Ca2+]i and is thought to follow earlier reverse-mode Na-Ca exchange that triggers...

متن کامل

C2C12 skeletal muscle cells adopt cardiac-like sodium current properties in a cardiac cell environment.

Intracardiac transplantation of undifferentiated skeletal muscle cells (myoblasts) has emerged as a promising therapy for myocardial infarct repair and is already undergoing clinical trials. The fact that cells originating from skeletal muscle have different electrophysiological properties than cardiomyocytes, however, may considerably limit the success of this therapy and, in addition, cause s...

متن کامل

Effects of heart failure on brain-type Na+ channels in rabbit ventricular myocytes.

AIMS Brain-type alpha-subunit isoforms of the Na(+) channel are present in various cardiac tissue types and may control pacemaker activity and excitation-contraction coupling. Heart failure (HF) alters pacemaker activity and excitation-contraction coupling. Here, we studied whether HF alters brain-type Na(+) channel properties. METHODS AND RESULTS HF was induced in rabbits by volume/pressure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2011